
IJDCST @October Issue- V-1, I-7, SW-9
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

32 www.ijdcst.com

Efficient Data Searching Using Forward Search

1Neelamraju Gunja, 2R. Vasantha

1Student, PG Scholar, Dept. of CSE, EVMCET,JONNALAGADDA, NARASARAOPET AP, India

2 Asst Professor, Dept. of CSE, EVMCET,JONNALAGADDA, NARASARAOPET AP, India

Abstract: Internet search engines are much popularized keyword search paradigm. In conventional search systems

on data submits it to the system and retrieves relevant information, when a user composes a query with different

keywords. If the user doesn’t know how to issue queries, he tries multiple queries and sees what the result is. A new

information retrieving system that searches data as the user types in query keywords. We study fuzzy type-ahead

search in XML data that the system searches XML data on the fly as the user types in query keywords. It allows

users to discover data as they type, even if there is an error in query keywords. Our proposed method has the

following features: a) Search as you type: It extends Auto complete by supporting queries with multiple keywords in

XML data b) Fuzzy: It can find high-quality answers that have keywords matching query keywords approximately

c) Efficient: Our effective index structures and searching algorithms can achieve a very high interactive speed. The

keyword search is alternative method to search in xml data, where user no needs to know about the knowledge of

xml data and query languages. We study research challenges in this new search framework. The proposed effective

index structures and top-k algorithms to achieve a high interactive speed. We examine effective ranking functions

and early termination techniques to progressively identify the top-k relevant answers to achieves high search

efficiency and result quality.

Index Terms: Search System, Index structures, Auto complete.

I. INTRODUCTION

Searching using keywords is a mostly used

mechanism for querying data such as XML data.

Keyword search is important in information systems.

A keyword search looks for words anywhere in the

record. The advantage of keyword search is its

simplicity-users do not have to learn complex query

language and can issue query without any knowledge

about structure of xml document. One important

advantage of keyword searching is it enables users to

search information neither knowing a complex query

language such as SQL. Traditional methods use

query languages such as XPath and XQuery to query

XML data. These methods are dominant but distant

to non-expert users.

 These query languages are hard to

understand for non-database users

 These languages require the queries to be

posed against the different and the original

database schemes.

Search system over XML data using keywords

submits it to the system and retrieves relevant

information from XML data. It requires the user to

have definite information about the structure and

content of the basic data repository. Xml was

designed to transport and store data. Recently, the

database research community has been studying

challenges related to keyword search in XML data.

One important advantage of keyword search is that it

enables users to search information without knowing

a complex query language such as XPath or XQuery.

This information-access paradigm requires the user to

have certain knowledge about the structure and

content of the underlying data repository. Many

systems are introducing various features to solve this

problem. Commonly used methods is Auto complete

that predicts a word or phrase that the user may type

in based on the partial string the user has typed.

IJDCST @October Issue- V-1, I-7, SW-9
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

33 www.ijdcst.com

Complete-Search does not support approximate

search that is it cannot allow minor errors between

query keywords and answers. We studied fuzzy type-

ahead search in textual documents.

II. LITERATURE SURVEY

Frequently used method is Auto complete that

predicts phrase that the user may type in based on the

unfinished string the user has typed. The problem

with Auto complete is that the system treats a query

as a single string if it consist multiple keywords.

 One solution to this problem given by Bast and

Weber is Complete Search in textual Documents that

can find related answers by allowing keywords in

query, come out at any places in the solution. Type-

forward search can provide users immediate response

as users type in keywords and it does not require

users to type in entire keywords. The Type-forward

search can help users browse the data that user save

typing attempt and efficiently find the answers.

Architecture for type-forward search as shown in the

fig.1

Fig. 1 Type-Forward Search System Architecture

We also considered type-forward search in relational

databases. XML data in a type-forward search way

and it is not inconsequential to expand existing

techniques to support type-forward search in XML

data because XML contains parent-child

relationships. We need to identify appropriate XML

sub trees that confine such structural relationships

from XML data to answer queries with keywords.

TFSX searches the XML data on the fly as user’s

type in query keywords even in the occurrence of

small errors of their keywords. Each query with

multiple keywords needs to be answered powerfully.

The foremost challenge is search-effectiveness.

This short running-time requirement is mainly

difficult when the backend repository has a huge

amount of data. We suggest effective index structures

and algorithms to solve keyword queries in XML

data. Effective ranking functions and timely

termination techniques to gradually discover top-k

answers.

Notations:

In general XML document can be organized as a

rooted tree with labeled nodes. Node v in the tree

corresponds to an element in the XML document and

has a label. Consider the XML document in Fig.2.

Fig. 2. An XML Document

A keyword query consists of a set of keywords {k1,

k2 . . . kl}. We call the nodes in the tree that contain

the keyword the content nodes for ki. Ancestor nodes

of the content nodes are called the quasi-content

nodes of the keyword. Title is a content node for

keyword “XML,” and jour is a quasi-content node of

keyword “XML.”

Keyword Search in XML Data: There are many

ways to identify the answers to a query on an XML

IJDCST @October Issue- V-1, I-7, SW-9
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

34 www.ijdcst.com

document. Frequently used one is based on the idea

of lowest common ancestor. Given an XML

document D and its XML nodes v1,v2, . . . , vm. We

say a node u in the document is the lowest common

ancestor of these nodes if for all (1 ≤ i ≤ m, u ≤ vi)

and there does not exist another node u` such that u <

u` and u`≤ vi. The LCA-based algorithm primarily

retrieves content nodes in XML data that contain the

input keywords using inverted indices. The LCAs of

the content nodes have the identities and takes the

sub trees rooted at the LCAs as the answer to the

query. To resolve the problem of use of LCAs as

query solutions, We have various methods have been

projected to progress search effectiveness and result

quality. Exclusive lowest common ancestor is the one

of the solution planned by Guo et al. and Xu and

Papakonstantinou.

III. TYPE-FORWARD SEARCH IN

XML DATA

We initially begin how TAFX works for

multiple keyword queries in XML data, by allowing

small errors of query keywords and inconsistencies in

the data itself. There is an original XML document

that resides on a server and a user accesses and

searches the data through a web browser. Keystroke

that the user types invoke a query consists existing

string. Browser sends the query to the server that

computes and profits to the user the best solutions

ranked by their relevancy to the keyword query.

Server primarily tokenizes the query into a number of

keywords using delimiters such as the space

character. The user may not type the entire keyword

because keywords are taken as a partial keyword. We

would like to know the feasible words the user

intends to type for the partial keywords. We can only

identify a set of complete words in the data set which

have similar prefixes with the partial keywords.

Predicted words, sets of the complete words,

we use edit distance to quantify the resemblance

between two words. Calculate the distance between

two words s1 and s2 is the lowest number of edit

operations of single characters needed to transform

the first one to the second. Server identifies the

related sub trees in XML data for every input

keyword that contain the predicted words. TAFX can

save users time and efforts because they can find the

answers even if they have not completed typing all

the entire keywords or typing keywords with small

errors.

TYPE-FORWARD SEARCH IN XML DATA:

Given an XML document D, the keyword

query Q= { k1, k2,. . . kl} and an edit-distance

threshold T. The predicted-word set be Wki = { w|w

is a tokenized word in D and there exists a prefix of

w, k`i, ed(ki , k`i) ≤ T }. For the keystroke that

invokes Q, we return the top-k answers in RQ for a

given value k. There are two challenges to maintain

type-forward search in XML data. To interactively

and powerfully identify the predicted words that have

prefixes similar to the input partial keyword after

each keystroke from the user. Second, o gradually

and efficiently figure the top-k predicted answers of a

query with multiple keywords, particularly when

there are many predicted words.

IV. LCA-Based Fuzzy Type-Ahead

Search

We use the semantics of ELCA to identify relevant

answers on top of predicted words.

Index Structure:

We use a tries structure to index the words in the

underlying XML data. Word w corresponds to a

unique path from the root of the tries to a leaf node.

Every node on the path has a label of a character in

w. We store an inverted list of IDs of XML elements

that contain the word of the leaf node. The tries

structure for the tokenized words is shown in Fig. 3

with respective to fig.2.

IJDCST @October Issue- V-1, I-7, SW-9
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

35 www.ijdcst.com

Fig. 3. The tries on top of words in Fig. 2

Answering Queries with a Single Keyword:

To answer a query with a single keyword using the

tries structure. Every keystroke that a user types

invokes a query of the current string and the client

browser sends the query string to the server. We

consider the case of exact search. The naive way to

process such a query on the server is to answer the

query from scratch as follows: we first find the tries

node corresponding to this keyword by traversing the

tries from the root. We locate the leaf descendants of

this node and retrieve the corresponding predicted

words and the predicted XML elements on the

inverted lists. The server finds the tries node

corresponding to this keyword. It locates the leaf

descendants of node and retrieves the corresponding

predicted words and the predicted XML elements.

When the user types in the character “i,” the client

sends a query string “mi” to the server. Server

answers the query from scratch as follows: it first

finds node 6 for this string. It retrieves the

corresponding predicted words. Other queries

invoked by keystrokes are processed in a similar way.

We can use a caching-based method to incrementally

find the tries node for the input keyword. Each

session keeps the keywords that the user has typed in

the past and the corresponding tries node. The user

may modify the previous query string arbitrarily or

copy and paste a completely different string. We use

this prefix to incrementally answer the new query by

inserting the characters after the longest prefix of the

new query one by one.

Answering Queries with Multiple Keywords:

We consider how to do fuzzy type-ahead search in

the case of a query with multiple keyword. We first

tokenize the query string into keywords k1,k2,k3…kl.

We compute the corresponding active node ki and for

each such active node we retrieve its leaf descendants

and corresponding inverted lists. we compute the

predicted answers on top of lists Uk1, Uk2 . . . Ukl .

We compute the predicted answers on top of lists

Uk1, Uk2 . . . Ukl .

V. Progressive And Effective Top-K

Fuzzy Type-Ahead Search

The LCA-based fuzzy type-ahead search algorithm in

XML data has two main limitations. They use the

“AND” semantics between input keywords of a query

and ignore the answers that contain some of the query

keywords. In order to compute the best results to a

query, existing methods need find candidates first

before ranking them, and this approach is not

efficient for computing the best answers. We develop

novel ranking techniques and efficient search

algorithms. Each node on the XML tree could be

potentially relevant to a keyword query and we use a

ranking function to decide the best answers to the

query. We index not only the content nodes for the

keyword of the leaf node. But also those quasi-

content nodes whose descendants contain the

keyword.

Minimal-Cost Tree: we introduce a new framework

to find relevant answers to a keyword query over an

XML document. Each node on the XML tree is

potentially relevant to the query with different scores.

We define each node with its corresponding answer

to the query as its sub tree with paths to nodes that

include the query keywords, which referred as

minimal-cost tree. Different nodes correspond to

different answers to the query, and we will study how

to quantify the relevance of each answer to the query

for ranking.

Ranking Minimal-Cost Trees:

We first introduce a ranking function for

exact search and then extend the ranking function to

IJDCST @October Issue- V-1, I-7, SW-9
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

36 www.ijdcst.com

support fuzzy search. To rank a minimal-cost tree, we

evaluate the relevance between the root node and

each input keyword and then combine these

relevance scores for every input keyword as the

overall score of the minimal-cost tree. The proposed

two ranking functions to compute the relevance score

between the root note n to an input keyword ki. Else,

considers the case that n does not contain ki but has a

descendant containing ki. Ranking method models

each node n as a document that includes the terms

contained in the tag name or text values of n. To

address this issue, we extend the first ranking

function and propose the second ranking function.

The distance between two points can indicate how

relevant the node n is to keyword kj. Smaller the

distance between n and p, the larger relevancy score

between n and kj should be. We proposed the second

ranking function to compute the relevance between n

and kj as follows:

As the distance between n and p increases, n becomes

less relevant to kj.

VI. TENTATIVE STUDY

We have implemented our method on real

applications using our proposed techniques. We

evaluate query results by human judgement. As

XMark data set captures more complicated structures

than DBLP data set. We implemented the hybrid

algorithm of XRANK for the LCA-based method.

We implemented XRANK’s ranking functions. The

server was running a program implemented in C++

and compiled with the GNU C++ compiler. The

quality of the result can be assessed by LCA-based

method and MCT-based methods. The quality of the

result can be assessed by LCA-based method and

MCT-based methods. Our MCT based search method

achieves much higher resu1t quality than the LCA

based method. The result analysis is as shown in the

fig.4.

Fig.4. Number of Keywords in Search Terms by

Country and Time

We evaluated the efficiency of computing the

prefixes on the tree that are similar to a query

keyword.

VII. CONCLUSION

We evaluated the efficiency of computing the

prefixes on the tree that are similar to a query

keyword. The proposed efficient incremental

algorithm to respond single-keyword queries that are

treated as prefix conditions. considered different

algorithms for computing the answers to a query with

multiple keywords. Well-organized algorithms are

developed for incrementally computing answers to

queries by using cached results of prior queries in

order to get a high interactive speed on huge data

sets. The LCA-based method to interactively discover

the predicted answers and developed a minimal cost

tree based search method to capably and step-by-step

recognize the nearly all relevant answers. We devised

a forward-index structure to further improve search

performance.

VIII. REFERENCE’s

[1]. Jianhua Feng, Guoliang Li, “Efficient Fuzzy

Type-Ahead Search in XML Data,” Proc. IEEE

Transactions on Knowledge and Data Engineering,

VOL. 24, NO. 5, MAY 2012.

[2]. Supriya sivapuja, Sk. Mohiddin, S Srikanth Babu

IJDCST @October Issue- V-1, I-7, SW-9
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

37 www.ijdcst.com

, Srikar Babu S.V, “Efficient Searching on Data

Using Forward Search ” Proc. International Journal

of Emerging Trends & Technology in Computer

Science, Volume 2, Issue 2, March – April 2013.

[3]. H. Bast and I. Weber, “Type Less, Find More:

Fast Autocompletion Search with a Succinct Index,”

Proc Ann. Int’l ACM SIGIR Conf. Research and

Development in Information Retrieval (SIGIR), pp.

364-371, 2006.

[4]. H. Bast and I. Weber, “The Completesearch

Engine: Interactive, Efficient, and towards Ir&db

Integration,” Proc. Biennial Conf. Innovative Data

Systems Research (CIDR), pp. 88-95, 2007.

[5]. D. Harel and R.E. Tarjan, “Fast Algorithms for

Finding nearest Common Ancestors,” SIAM J.

Computing, vol. 13, no. 2, pp. 338- 355, 1984.

[6]. L. Guo, F. Shao, C. Botev, and J.

Shanmugasundaram, “Xrank: Ranked Keyword

Search over Xml Documents,” Proc. ACM SIGMOD

Int’l Conf. Management of Data, pp. 16-27, 2003.

[7]. Z. Liu and Y. Chen, “Identifying Meaningful

Return Information for Xml Keyword Search,” Proc.

ACM SIGMOD Int’l Conf. Management of Data, pp.

329-340, 2007.

